12月1日 | 王成:On eigenvalues of a high-dimensional Kendall's rank correlation matrix with dependence

时间:2021-11-18浏览:142设置

时  间:2021年12月1日(周三) 15:00-16:00

地  点:腾讯会议 943 402 996

题  目:On eigenvalues of a high-dimensional Kendall's rank correlation matrix with dependence

主讲人:王成 特别研究员

主持人:王小舟 助理教授

主  办:经济与管理学部统计学院

摘  要:This paper investigates limiting spectral distribution of a high-dimensional Kendall's rank correlation matrix. The underlying population is allowed to have general dependence structure. The result no longer follows the generalized Marcenko-Pastur law which is a brand new limiting spectral distribution for sample covariance/correlation matrices. It's the first result on rank correlation matrices with dependence. As applications, we study the Kendall's rank correlation matrix for multivariate normal distributions with a general covariance matrix.  From these results, we further gain insights of Kendall's rank correlation matrix and its connections with the sample covariance/correlation matrix.

报告人简介:王成,2013年博士毕业于中国科学技术大学,曾获得过中科院院长特别奖。2014年9月加入上海交通大学数学科学学院担任特别研究员。主要研究方向为随机矩阵理论及应用、高维协方差矩阵的统计推断等。在统计领域核心期刊Statistica Sinica, Electronic Journal of Statistics, Journal of Multivariate Analysis等杂志上发表学术论文十余篇。 主持国家自然科学基金、上海市科研项目以及企业项目5项,参与国家自然科学基金重点项目、面上项目等多项。

 

 


返回原图
/