12月16日 | 胡治水:The largest component of random intersection graph

时间:2021-12-14浏览:219设置

时  间:2021年12月16日(周四)10:00-11:00

地  点:腾讯会议:733 227 245

题  目:The largest component of random intersection graph

报告人:胡治水 中国科学技术大学管理学院副教授

主持人:徐方军 教授

主  办:统计学院

摘要:

In the talk,we study the size of the largest component of the random intersection graph $G(n,m,p)$ with $m=[n^r]$ in the subcritical regime, i.e., when the expected vertex degree is smaller than one. Phase transitions occur in the subcritical random intersection graphs: if $r>1$, then the largest component is a tree of order $\Theta(\log n)$ which is the same as that of the corresponding subcritical Erdos-Renyi random graph; if $r=1$, then the largest component is no longer a tree, but the largest component and the largest tree component are both of order $\Theta(\log n)$; if $0<r<1$, then the largest tree component is of order $o(\log n)$ while the largest component is of order $\Theta(np\log n)$.

报告人简介:

胡治水,中国科学技术大学管理学院副教授,从事概率论极限理论和随机图论等领域的研究,在Ann. Statist., J. Appl. Probab., Electron, J. Probab., Econometric Theory等期刊发表学术论文40多篇,主持国家自然科学基金等多项科研项目。


返回原图
/