报告时间:5月12日(周五)上午10:00—11:00
报告地点:法商南楼516
报告题目:Robust Conditional Sure Independence Screening via Blum-Kiefer-Rosenblatt Correlation Learning
报告人:朱利平 教授
报告内容:
Marginal screening methods have been widely used in the high dimensional data analysis. Despite they are easy to implement, they still suffer from the failure in detecting the important predictors with weak marginal signals. In this paper we develop a model-free conditional screening procedure based on conditional Blum-Kiefer-Rosenblatt correlation (CBKR for short), a metric to measure the conditional contributions of predictors to the response. Our proposed procedure is robust to the presence of extreme values and outliers in the observations, indicating it can accommodate the heterogeneity in the high dimensional data. We also show that, under mild conditions, the proposed procedure has the desirable sure screening property, which guarantee that all important predictors can be retained after screening with probability approaching one. Moreover, we provide a data-driven procedure to determine the number of features to be retained after screening. The usefulness of this conditional screening procedure is illustrated by the simulation studies and an application to the gene expression microarray dataset of rat eye.
报告人简介:
朱利平,男,1978年5月出生。2006年6月于华东师范大学取得理学博士学位。现为中国人民大学统计与大数据研究院教授(终身教职)、博士生导师。
朱利平长期从事统计学理论和方法研究,他在高维及超高维数据统计分析、半参数回归模型统计推断等领域做出了一些比较重要的研究工作。他与合作者提出了一类不依赖于光滑参数选取的降维方法,解决了充分降维领域关于“如何选择最优光滑参数”这个长期存在(longstanding)的公开问题(open problem);他与合作者也提出了一类不依赖于高维变量分布假设的充分降维方法,并建立了半参数回归模型统计推断方法与充分降维方法之间的联系;另外,他与合作者也提出了一类不依赖于模型形式的变量筛选方法,简化了超高维数据的探索性分析,并提高了变量筛选结果的稳健性。他与合作者的这些研究成果得到了诸多著名统计学家的关注与高度评价。
朱利平在统计学领域最重要的四个杂志(Journal of the American Statistical Association、Journal of the Royal Statistical Society Series B、The Annals of Statistics 和 Biometrika)上发表论文十多篇,其他重要SCI论文五十余篇。他有多篇论文被列为统计学领域ESI高被引论文。
朱利平的研究工作得到多项国家自然科学基金的支持。他是国家自然科学基金优秀青年基金获得者,也入选中组部万人计划青年拔尖人才计划以及教育部新世纪优秀人才计划等。